Homework 11 PS405

Due: Monday, November 28, 2016

Some of the problems are from "The Physics of Nuclei and Particles," by Richard A Dunlap

Chapter 4

4.2 Modified

Use Equation 4.10 to calculate the binding energy/nucleon (B/A) for ${}_{2}^{4}He$, ${}_{26}^{56}Fe$, and ${}_{79}^{197}Au$. Compare these to the Wolfram Database for Isotope Data.*

Determine the percent difference between the *calculated* B/A (using the semiempirical mass formula) and the *database* B/A.

4.4 (a) Using measured atomic masses m calculate the binding energies of ^{13}C and ^{13}N . These nuclei are referred to as mirror nuclei.

Use Eq. 4.2 to calculate B (ignore b the binding energy of the electrons).

$$B(_{6}^{13}C) =$$
______ MeV

$$B(^{13}_{7}N) = \underline{\qquad} MeV$$

- (b) On the basis of the liquid drop model, describe the reason(s) for the differences observed in part (a).
- (c) From these results, calculate $A^{1/3}$ from the coulomb term and calculate the radius of the $^{13}_{6}C$ nucleus.

 $R_o =$ ______MeV

4.8 Modified

Using the semiempirical mass formula, calculate the most stable value of Z for nuclei having the following number of nucleons: A = 10, 50, 100, 200.

Problem 4

The ground-state wave-function of a lepton of mass m in a Coulomb potential $-\frac{Ze^2}{4\pi\epsilon_o r}$ is

$$\psi(r) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a}\right)^{3/2} e^{-Zr/a}$$

where a is the Bohr radius ($\hbar/(m\alpha c)$), and the corresponding binding energy E is $Z^2\hbar^2/2ma^2$. The finite size of the nucleus modifies the Coulomb energy for r < R, the nuclear radius, by adding a term of the approximate form

$$V(r) = -\frac{Ze^2}{4\pi\epsilon_0 R} \left[\frac{3}{2} - \frac{r^2}{2R^2} - \frac{R}{r} \right]$$

- (a) Show that the volume integral $(0 \to R)$ of this potential energy is $\int V(r)d^3r = \frac{Ze^2R^2}{10\epsilon_0}$.
- (b) Show that the first-order correction to the binding energy due to this term, $\Delta E = \int \psi^*(r)V(r)\psi(r)d^3r$, is

$$\Delta E \approx \frac{e^2}{10\pi\epsilon_o} \frac{Z^4 R^2}{a^3}$$

(Note that the lepton wave-function can be taken to be constant over nuclear dimensions.)

(c) For the nucleus $^{66}_{30}Zn$ show that:

$$\frac{\Delta E}{E} \approx 5 \times 10^{-6}$$
 for electrons,

$$\frac{\Delta E}{E} \approx 0.2$$
 for muons.

Problem 5

In an experiment using 14 g of selenium containing 97% by weight of $^{82}_{34}Se$, 35 events associated with the double β -decay

$$^{82}_{34}Se \to {}^{82}_{36}Kr + 2e^- + 2\bar{\nu}_e$$

were counted over a period of 7960 hours. Assuming a detector efficiency of 6.2%, estimate the mean life for this decay.

(See S. R. Elliott, A. A. Hahn, and M. K. Moe, Phys. Rev. Lett. 59, 2020 - Published 2 November 1987)

*IsotopeData Source Information

IsotopeData is based on a wide range of sources, with enhancement at the Wolfram Research Companies by both human and algorithmic processing.

Among principal sources for IsotopeData are:

Atomic Mass Data Center. "NUBASE." 2003. »

Firestone, R. B. "The Berkeley Laboratory Isotopes Project's: Exploring the Table of Isotopes." 2000. » Raghavan, P. "Table of Nuclear Moments." *Atomic Data and Nuclear Data Tables* 42, no. 2 (1989): 189–291

Sansonetti, J. E. and W. C. Martin. "NIST Handbook of Basic Atomic Spectroscopic Data." 2005. » United States National Institute of Standards and Technology. "Atomic Weights and Isotopic Compositions Elements." 2005. »

United States National Nuclear Data Center, Brookhaven National Laboratory. "Nuclear Wallet Cards." 2007. »

United States National Nuclear Data Center, Brookhaven National Laboratory. "NuDat 2.3." 2007. »